Supervised Hashing with End-to-End Binary Deep Neural Network
نویسندگان
چکیده
Image hashing is a popular technique applied to large scale content-based visual retrieval due to its compact and efficient binary codes. Our work proposes a new end-to-end deep network architecture for supervised hashing which directly learns binary codes from input images and maintains good properties over binary codes such as similarity preservation, independence, and balancing. Furthermore, we also propose a new learning scheme that can cope with the binary constrained loss function. The proposed algorithm not only is scalable for learning over large-scale datasets but also outperforms state-of-the-art supervised hashing methods, which are illustrated throughout extensive experiments from various image retrieval benchmarks.
منابع مشابه
Deep Discrete Supervised Hashing
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, util...
متن کاملDeep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss
Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...
متن کاملHashing with Mutual Information
Binary vector embeddings enable fast nearest neighbor retrieval in large databases of high-dimensional objects, and play an important role in many practical applications, such as image and video retrieval. We study the problem of learning binary vector embeddings under a supervised setting, also known as hashing. We propose a novel supervised hashing method based on optimizing an information-th...
متن کاملDeep Discrete Hashing with Self-supervised Pairwise Labels
Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, whi...
متن کاملDeep Hashing with Category Mask for Fast Video Retrieval
This paper proposes an end-to-end deep hashing framework with category mask for fast video retrieval. We train our network in a supervised way by fully exploiting interclass diversity and intra-class identity. Classification loss is optimized to maximize inter-class diversity, while intra-pair is introduced to learn representative intra-class identity. We investigate the binary bits distributio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.08901 شماره
صفحات -
تاریخ انتشار 2017